Numerical Solution of Large-Scale Inverse Problems

Silvia Gazzola

Department of Mathematical Sciences

SAMBa SLS
December 7, 2016

Introducing Inverse Problems

Introducing Inverse Problems

When solving a

DIRECT PROBLEM

we are interested in a system's behavior, given the internal structure of the system.

Introducing Inverse Problems

When solving a

DIRECT PROBLEM

we are interested in a system's behavior, given the internal structure of the system.

When solving an

INVERSE PROBLEM

we are interested in determining the internal structure of a system, given the system's observed behavior.

Introducing Inverse Problems

When solving a

DIRECT PROBLEM

we are interested in a system's behavior, given the internal structure of the system.

When solving an

INVERSE PROBLEM

we are interested in determining the internal structure of a system, given the system's observed behavior.

■ Direct problems: from the cause of a observed phenomenon, to its effect.

- Inverse problems: from the effect of an observed phenomenon, to its cause.

Some examples

Some examples

Inverse problems are ill-posed

According to Hadamard (1923), a problem is ill-posed if
■ (the) solution is not unique
or
■ (the) solution does not depend continuously on the given data

Inverse problems are ill-posed

According to Hadamard (1923), a problem is ill-posed if
■ (the) solution is not unique
or

■ (the) solution does not depend continuously on the given data

Indeed, this is what happens:
deblurring

CT

Understanding what goes wrong

Understanding what goes wrong

Consider the SVD of $A \in \mathbb{R}^{N \times N}$, for these examples $N=65536$:

$$
A=U \Sigma V^{T}
$$

When there is noise, $b=b^{e x}+e\left(\right.$ for this example $\|e\|_{2} /\|b\|_{2}=10^{-2}$):

Understanding what goes wrong

Consider the SVD of $A \in \mathbb{R}^{N \times N}$, for these examples $N=65536$:

$$
A=U \Sigma V^{T} \quad \Longrightarrow \quad x=\sum_{i=1}^{N} \frac{u_{i}^{\top} b}{\sigma_{i}} v_{i}
$$

When there is noise, $b=b^{e x}+e\left(\right.$ for this example $\|e\|_{2} /\|b\|_{2}=10^{-2}$):

Understanding what goes wrong

Consider the SVD of $A \in \mathbb{R}^{N \times N}$, for these examples $N=65536$:

$$
A=U \Sigma V^{T} \quad \Longrightarrow \quad x=\sum_{i=1}^{N} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}=\sum_{i=1}^{N} \frac{u_{i}^{T} b^{e x}}{\sigma_{i}} v_{i}+\sum_{i=1}^{N} \frac{u_{i}^{T} e}{\sigma_{i}} v_{i} .
$$

When there is noise, $b=b^{e x}+e\left(\right.$ for this example $\|e\|_{2} /\|b\|_{2}=10^{-2}$):

Applying direct regularisation

Applying direct regularisation

Truncated SVD (TSVD):

$$
x_{k}=\sum_{i=1}^{k} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}, \quad k \ll N
$$

Applying direct regularisation

Truncated SVD (TSVD):

$$
x_{k}=\sum_{i=1}^{k} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}, \quad k \ll N
$$

For this example: $k=3653$.

Applying direct regularisation

Tikhonov regularization:

$$
x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|L x\|_{2}^{2}, \quad \lambda>0
$$

Applying direct regularisation

Tikhonov regularization:

$$
x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|L x\|_{2}^{2}, \quad \lambda>0
$$

For this example: $\lambda=1.76 \cdot 10^{-4}, L=I$.

Iterative Regularization Methods (no SVD!)

Iterative Regularization Methods (no SVD!)

■ Gradient Descent Methods

$$
x_{m+1}=x_{m}+\alpha_{m} A^{T}\left(b-A x_{m}\right)
$$

Iterative Regularization Methods (no SVD!)

- Gradient Descent Methods

$$
x_{m+1}=x_{m}+\alpha_{m} A^{T}\left(b-A x_{m}\right)
$$

■ Krylov methods: CGLS (LSQR), GMRES, ...

Iterative Regularization Methods (no SVD!)

■ Gradient Descent Methods

$$
x_{m+1}=x_{m}+\alpha_{m} A^{T}\left(b-A x_{m}\right)
$$

■ Krylov methods: CGLS (LSQR), GMRES, ...
relative errors

Iterative Regularization Methods (no SVD!)

■ Gradient Descent Methods

$$
x_{m+1}=x_{m}+\alpha_{m} A^{T}\left(b-A x_{m}\right)
$$

■ Krylov methods: CGLS (LSQR), GMRES, ...
relative errors

Iterative Regularization Methods (no SVD!)

■ Gradient Descent Methods

$$
x_{m+1}=x_{m}+\alpha_{m} A^{T}\left(b-A x_{m}\right)
$$

■ Krylov methods: CGLS (LSQR), GMRES, ...
relative errors

Iterative Regularization Methods (no SVD!)

■ Gradient Descent Methods

$$
x_{m+1}=x_{m}+\alpha_{m} A^{T}\left(b-A x_{m}\right)
$$

■ Krylov methods: CGLS (LSQR), GMRES, ...
relative errors

Gradient Descent approach VS. Krylov Subspaces approach

relative error history

Enforcing sparsity

■ By penalisation:

$$
\begin{aligned}
& x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|\Psi x\|_{1}
\end{aligned}
$$

Enforcing sparsity

■ By penalisation:

$$
\begin{aligned}
& x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|\Psi x\|_{1}
\end{aligned}
$$

- By imposing constraints:

$$
\begin{aligned}
& x_{B}=\arg \min _{x \in B}\|A x-b\|_{2}, \quad \text { e.g., } B=\left\{x \text { s.t. }\|\Psi x\|_{1} \leq \zeta\right\} \\
& x_{C}=\arg \min _{x \in C}\left\|\Psi_{x}\right\|_{1}, \quad \text { e.g., } C=\left\{x \text { s.t. }\|A x-b\|_{2} \leq \varepsilon\right\}
\end{aligned}
$$

Enforcing sparsity

■ By penalisation:

$$
\begin{aligned}
& x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& x_{\lambda}=\arg \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda\|\Psi x\|_{1}
\end{aligned}
$$

- By imposing constraints:

$$
\begin{aligned}
& x_{B}=\arg \min _{x \in B}\|A x-b\|_{2}, \quad \text { e.g., } B=\left\{x \text { s.t. }\left\|\Psi_{x}\right\|_{1} \leq \zeta\right\} \\
& x_{C}=\arg \min _{x \in C}\left\|\Psi_{x}\right\|_{1}, \quad \text { e.g., } C=\left\{x \text { s.t. }\|A x-b\|_{2} \leq \varepsilon\right\} \\
& x_{+}=\arg \min _{x \geq 0}\|A x-b\|_{2}
\end{aligned}
$$

Why $\|\cdot\|_{1}$ is successful in enforcing sparsity?

Why $\|\cdot\|_{1}$ is successful in enforcing sparsity?

$\min \|z\|_{1} \quad$ s.t. $\quad A z=y, \quad$ with $A \in \mathbb{R}^{1 \times 2},\|z\|_{1}=\left|z_{1}\right|+\left|z_{2}\right|$

Why $\|\cdot\|_{1}$ is successful in enforcing sparsity?

$\min \|z\|_{1} \quad$ s.t. $\quad A z=y, \quad$ with $A \in \mathbb{R}^{1 \times 2},\|z\|_{1}=\left|z_{1}\right|+\left|z_{2}\right|$

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

Why $\|\cdot\|_{1}$ is successful in enforcing sparsity?

$\min \|z\|_{1} \quad$ s.t. $\quad A z=y, \quad$ with $A \in \mathbb{R}^{1 \times 2},\|z\|_{1}=\left|z_{1}\right|+\left|z_{2}\right|$

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

Why $\|\cdot\|_{1}$ is successful in enforcing sparsity?

$\min \|z\|_{1} \quad$ s.t. $\quad A z=y, \quad$ with $A \in \mathbb{R}^{1 \times 2},\|z\|_{1}=\left|z_{1}\right|+\left|z_{2}\right|$

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]
the sparsest solution is recovered!

$\|\cdot\|_{1}$ vs. $\|\cdot\|_{2}$ minimisation

[Image courtesy: Baraniuk et al. An Introduction to Compressive Sensing, 2013]

Examples of sparsity transforms Ψ

Examples of sparsity transforms Ψ

original

Examples of sparsity transforms Ψ

Examples of sparsity transforms ψ

2D wavelets

wavelet coefficients

Examples of sparsity transforms Ψ

gradient

gradient coefficients

Incomplete information \& compressive sensing theory

Assume we wish recover $x \in \mathbb{R}^{N}$ from

$$
A x+n=b, \quad A \in \mathbb{R}^{M \times N}, \quad M \ll N
$$

Incomplete information \& compressive sensing theory

Assume we wish recover $x \in \mathbb{R}^{N}$ from

$$
A x+n=b, \quad A \in \mathbb{R}^{M \times N}, \quad M \ll N
$$

Then, provided that we have
■ sparsity (Ψ_{X} is k-sparse)

- randomness (the rows of A are chosen uniformly at random)
- "incoherence" $((A, \Psi)$ with "coherence" $\mu \ll \sqrt{N})$
and

$$
M \geq C \cdot \mu^{2} \cdot(k \cdot \log (N)),
$$

Incomplete information \& compressive sensing theory

Assume we wish recover $x \in \mathbb{R}^{N}$ from

$$
A x+n=b, \quad A \in \mathbb{R}^{M \times N}, \quad M \ll N
$$

Then, provided that we have
■ sparsity (Ψ_{X} is k-sparse)
■ randomness (the rows of A are chosen uniformly at random)

- "incoherence" $((A, \Psi)$ with "coherence" $\mu \ll \sqrt{N})$
and

$$
M \geq C \cdot \mu^{2} \cdot(k \cdot \log (N))
$$

then the compressive sensing theory guarantees that we can recover $x \in \mathbb{R}^{N}$ with overwhelming probability by solving

$$
\min _{x \in \mathbb{R}^{N}}\|\Psi x\|_{1} \quad \text { s.t. } \quad\|A x-b\|_{2} \leq \varepsilon
$$

Making sense of "(in)coherence"

Let $a^{i}, i=1, \ldots, N, \psi^{j}, j=1, \ldots, N$ be two basis of \mathbb{R}^{N}. Then, the coherence μ between a^{i} and ψ^{j} is defined as

$$
\mu=\sqrt{N} \max _{1 \leq i, j \leq N} \frac{\left|\left\langle a^{i}, \psi^{j}\right\rangle\right|}{\left\|a^{i}\right\|_{2}\left\|\psi^{j}\right\|_{2}}
$$

Making sense of "(in)coherence"

Let $a^{i}, i=1, \ldots, N, \psi^{j}, j=1, \ldots, N$ be two basis of \mathbb{R}^{N}. Then, the coherence μ between a^{i} and ψ^{j} is defined as

$$
\mu=\sqrt{N} \max _{1 \leq i, j \leq N} \frac{\left|\left\langle a^{i}, \psi^{j}\right\rangle\right|}{\left\|a^{i}\right\|_{2}\left\|\psi^{j}\right\|_{2}}
$$

Note that

$$
1 \leq \mu \leq \sqrt{N}
$$

Making sense of "(in)coherence"

Let $a^{i}, i=1, \ldots, N, \psi^{j}, j=1, \ldots, N$ be two basis of \mathbb{R}^{N}. Then, the coherence μ between a^{i} and ψ^{j} is defined as

$$
\mu=\sqrt{N} \max _{1 \leq i, j \leq N} \frac{\left|\left\langle a^{i}, \psi^{j}\right\rangle\right|}{\left\|a^{i}\right\|_{2}\left\|\psi^{j}\right\|_{2}}
$$

Note that

$$
1 \leq \mu \leq \sqrt{N}
$$

[time for a movie...]

On the whiteboard...

J. F. Cai, E. J. Candes, and Z. Shen
A Singular Value Thresholding Algorithm for Matrix Completion
SIAM J. Optim., Vol 20, No 4, pp. 1956-1982

http://epubs.siam.org/doi/ref/10.1137/080738970

